

Radiative Heat Transfer in Coal-Fired Furnaces and Oxycoal Retrofit Considerations

By Jens Erfurth

Shaker Verlag Feb 2012, 2012. Buch. Book Condition: Neu. 211x147x22 mm. Neuware - Oxycoal combustion is the combustion of coal using a mixture of oxygen and cooled recycled flue gas in place of air. In the last years it has gained interest as a means of CO₂ capture from stationary point sources. In particular, under emission mitigation regimes the retrofit of existing coal-fired power plants may help avoid 'stranded assets' through lower emissions and thus costs if certain technical criteria can be met. Among these is the need to keep total heat transfer in the boiler constant while not raising the furnace exit temperature. The altered gas composition in oxycoal combustion leads to changes in both convective and radiative heat transfer, of which the latter, while of overwhelming importance in the furnace, poses a particular challenge to modellers. This work is thus primarily concerned with the simulation of radiative heat transfer. After a short introduction to oxycoal combustion, a general discussion of Computational Fluid Dynamics (CFD) models for coal combustion is given. Emphasis is placed on the physics of molecular gas band radiation, respective modelling approaches and their application within a CFD context. Based on this analysis, it is concluded...

[DOWNLOAD PDF](#)

[READ ONLINE](#)

[7.08 MB]

Reviews

Complete guideline! Its such a excellent read. This really is for all who statte there had not been a worth studying. It is extremely difficult to leave it before concluding, once you begin to read the book.

-- *Timothy Lynch*

I actually started looking over this ebook. It is definitely simplified but excitement inside the 50 percent of your ebook. You are going to like just how the blogger create this ebook.

-- *Efren Swift*